Development of a Portable and Modular Gas Generator: Application to Formaldehyde Analysis

Author:

Becker Anaïs,Lohmann Nathaly,Serra Christophe A.,Le Calvé StéphaneORCID

Abstract

This work aims at developing and validating under laboratory-controlled conditions a gas mixture generation device designed for easy on-site or laboratory calibration of analytical instruments dedicated to air monitoring, such as analysers or sensors. This portable device, which has been validated for formaldehyde, is compact and is based on the diffusion of liquid formaldehyde through a short microporous interface with an air stream to reach non-Henry equilibrium gas–liquid dynamics. The geometry of the temperature-controlled assembly has been optimised to allow easy change of the aqueous solution, keeping the microporous tube straight. The formaldehyde generator has been coupled to an on-line formaldehyde analyser to monitor the gas concentration generated as a function of the liquid formaldehyde concentration, the temperature, the air gas flow rate, and the microporous tube length. Our experimental results show that the generated gaseous formaldehyde concentration increase linearly between 10 and 1740 µg m−3 with that of the aqueous solution ranging between 0 and 200 mg L−1 for all the gas flow rates studied, namely 25, 50 and 100 mL min−1. The generated gas phase concentration also increases with increasing temperature according to Henry’s law and with increasing the gas–liquid contact time either by reducing the gas flow rate from 100 to 25 mL min−1 or increasing the microporous tube length from 3.5 to 14 cm. Finally, the performances of this modular formaldehyde generator are compared and discussed with those reported in the scientific literature or commercialised by manufacturers. The technique developed here is the only one allowing to operate with a low flow rate such as 25 to 100 mL min−1 while generating a wide range of concentrations (10–1000 µg m−3) with very good accuracy.

Funder

MICA Carnot Institute

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3