Abstract
Novel, sensitive, selective, efficient and portable electrochemical biosensors are needed to detect residual contaminants of the pesticide 1-naphthyl methylcarbamate (carbaryl) in the environment, food, and essential biological fluids. In this work, a study of nanocomposite-based Ag reduced graphene oxide (rGO) and chitosan (CS) that optimise surface conditions for immobilisation of acetylcholinesterase (AChE) enzyme to improve the performance of catalytic biosensors is examined. The Ag/rGO/CS nanocomposite membrane was used to determine carbaryl pesticide using a potentiometer transducer. The AChE enzyme-based biosensor exhibits a good affinity for acetylthiocholine chloride (ATCl). It can catalyse the hydrolysis of ATCl with a potential value of 197.06 mV, which is then oxidised to produce a detectable and rapid response. Under optimal conditions, the biosensor detected carbaryl pesticide at concentrations in the linear range of 1.0 × 10−8 to 1.0 μg mL−1 with a limit of detection (LoD) of 1.0 × 10−9 μg mL−1. The developed biosensor exhibits a wide working concentration range, detection at low concentrations, high sensitivity, acceptable stability, reproducibility and simple fabrication, thus providing a promising tool for pesticide residue analysis.
Funder
Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献