Highly Fluorescent Carbon Dots as a Potential Fluorescence Probe for Selective Sensing of Ferric Ions in Aqueous Solution

Author:

Atchudan RajiORCID,Kishore Somasundaram Chandra,Edison Thomas Nesakumar Jebakumar ImmanuelORCID,Perumal SugunaORCID,Vinodh Rajangam,Sundramoorthy Ashok K.ORCID,Babu Rajendran SureshORCID,Alagan Muthulakshmi,Lee Yong Rok

Abstract

This paper’s emphasis is on the development of a fluorescent chemosensor for Fe3+ ions in an aqueous solution, using hydrophilic carbon dots (O-CDs). A simple, cost-effective, and environmentally friendly one-step hydrothermal synthesis method was used to synthesize fluorescent hydrophilic O-CDs from Oxalis corniculata (Family; Oxalidaceae). The graphitic structure and size distribution of the O-CDs was verified by X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy studies. The resulting O-CDs had a near-spherical shape and an adequate degree of graphitization at the core, with an average diameter of 4.5 nm. X-ray photoelectron and Fourier transform infrared spectroscopy methods revealed the presence of several hydrophilic groups (carbonyl, amine, carboxyl, and hydroxyl, along with nitrogen and oxygen-rich molecules) on the surface of O-CDs. The synthesized hydrophilic O-CDs with excitation wavelength-dependent emission fluorescence characteristics showed a high quantum yield of about 20%. Besides this, the hydrophilic O-CDs exhibited a bright and controllable fluorescence with prolonged stability and photo-stability. These fluorescent hydrophilic O-CDs were used as a nanoprobe for the fluorometric identification of Fe3+ ions in an aqueous solution, with high sensitivity and selectivity. By quenching the blue emission fluorescence of this nanosensor, a highly sensitive Fe3+ ion in the range of 10–50 µM with a minimum detection limit of 0.73 µM was achieved. In addition, the developed nanosensor can be used to sense intracellular Fe3+ ions with high biocompatibility and cellular imaging capacity, and it has a lot of potential in biomedical applications.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3