Detecting Fingerprints of Waterborne Bacteria on a Sensor

Author:

Saylan ,Erdem ,Cihangir ,Denizli

Abstract

Human fecal contamination is a crucial threat that results in difficulties in access to clean water. Enterococcus faecalis is a bacteria which is utilized as an indicator in polluted water. Nevertheless, existing strategies face several challenges, including low affinity and the need for labelling, which limit their access to large scale applications. Herein, a label-free fingerprint of the surface proteins of waterborne bacteria on a sensor was demonstrated for real-time bacteria detection from aqueous and water samples. The kinetic performance of the sensor was evaluated and shown to have a range of detection that spanned five orders of magnitude, having a low detection limit (3.4 × 104 cfu/mL) and a high correlation coefficient (R2 = 0.9957). The sensor also designated a high selectivity while other competitor bacteria were employed. The capability for multiple usage and long shelf-life are superior to other modalities. This is an impressive surface modification method that uses the target itself as a recognition element, ensuring a broad range of variability to replicate others with different structure, size and physical and chemical properties.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3