Abstract
Cyclic mechanical stretching, including uniaxial strain, has been manifested to regulate the cell morphology and functions directly. In recent years, many techniques have been developed to apply cyclic mechanical stretching to cells in vitro. Pneumatically actuated stretching is one of the extensively used methods owing to its advantages of integration, miniaturization, and long-term stretching. However, the intrinsic difficulty in fabrication and adjusting the strain mode also impedes its development and application. In this study, inspired by the topological defects principle, we incorporated a ridge structure into the membrane surface of a traditional pneumatic cavity stretching chip to regulate the strain mode. Our results showed that the surface ridge structure can directly change the equiaxial stretching mode to the standard uniaxial strain, and it is ridge width-independent. The uniaxial strain mode was further proved by the cell orientation behavior under cyclic stretching stimulation. Moreover, it is easy to realize the multimodal strain fields by controlling the width and height of the ridge and to achieve high-throughput testing by creating a cavity array using microfabrication. Together, we propose a smart method to change the surface strain field and introduce a simple, yet effective, high-throughput pneumatically actuated uniaxial stretching platform, which can not only realize the multimodal mechanical stimulation but also achieve multiscale mechanosensing behaviors of single-cell or multi-cell (tissue and/or organoid) mechanobiology applications.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Analytical Chemistry