Highly Sensitive Hydrogen Sensing Based on Tunable Diode Laser Absorption Spectroscopy with a 2.1 μm Diode Laser

Author:

Liang Tiantian,Qiao Shunda,Liu Xiaonan,Ma YufeiORCID

Abstract

As a new form of energy, hydrogen (H2) has clean and green features, and the detection of H2 has been a hot topic in recent years. However, the lack of suitable laser sources and the weak optical absorption of H2 limit the research concerning its detection. In this study, a continuous-wave distributed feedback (CW-DFB) diode laser was employed for sensing H2. Tunable diode laser absorption spectroscopy (TDLAS) was adopted as the detection technique. The strongest H2 absorption line, located at 4712.90 cm−1 (2121.83 nm, line strength: 3.19 × 10−26 cm−1/cm−2 × molec), was selected. We propose a H2-TDLAS sensor based on the wavelength modulation spectroscopy (WMS) technique and a Herriott multipass gas cell (HMPC) with an optical length of 10.13 m to achieve a sensitive detection. The WMS technique and second harmonic (2f) demodulation technique were utilized to suppress system noise and simplify the data processing. The 2f signal of the H2-TDLAS sensor, with respect to different H2 concentrations, was measured when the laser wavelength modulation depth was at the optimal value of 0.016 cm−1. The system’s signal-to-noise ratio (SNR) and minimum detection limit (MDL) were improved from 248.02 and 0.40% to 509.55 and 0.20%, respectively, by applying Daubechies (DB) wavelet denoising, resulting in 10 vanishing moments. The Allan variance was calculated, and the optimum MDL of 522.02 ppm was obtained when the integration time of the system was 36 s.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference57 articles.

1. Fossil-fuel resources and CO2 production from combustion

2. On hydrogen and hydrogen energy strategies

3. Hydrogen as an energy carrier: Prospects and challenges

4. Electrophoretically deposited nanostructured PdO thin film for room temperature amperometric H2 sensing

5. High electron mobility transistor-based hydrogen sensor using ITO as a sensing layer;Bin Taher;Proceedings of the 20th IEEE Sensors Conference, Electr Network,2021

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3