Abstract
Compared with traditional two-dimensional culture, a three-dimensional (3D) culture platform can not only provide more reliable prediction results, but also provide a simple, inexpensive and less time-consuming method compared with animal models. A direct in vitro model of the patient’s tumor can help to achieve individualized and precise treatment. However, the existing 3D culture system based on microwell arrays has disadvantages, such as poor controllability, an uneven spheroid size, a long spheroid formation time, low-throughput and complicated operation, resulting in the need for considerable labor, etc. Here, we developed a new type of microdevice based on a 384-well plate/96-well plate microarray design. With our design, cells can quickly aggregate into clusters to form cell spheroids with better roundness. This design has the advantage of high throughput; the throughput is 33 times that of a 384-well plate. This novel microdevice is simple to process and convenient to detect without transferring the cell spheroid. The results show that the new microdevice can aggregate cells into spheroids within 24 h and can support drug and radiation sensitivity analyses in situ in approximately one week. In summary, our microdevices are fast, efficient, high-throughput, simple to process and easy to detect, providing a feasible tool for the clinical validation of individualized drug/radiation responses in patients.
Funder
National Natural Science Foundation of China
National Grand Instrument Project
Subject
Physical and Theoretical Chemistry,Analytical Chemistry