Abstract
In this work, we were able to produce Co2FeSi Heusler alloy glass-covered microwires with a metallic nucleus diameter of about 4.4 µm and total sample diameter of about 17.6 μm by the Taylor–Ulitovsky Technique. This low cost and single step fabrication process allowed the preparation of up to kilometers long glass-coated microwires starting from a few grams of high purity inexpensive elements (Co, Fe and Si), for a wide range of applications. From the X-ray diffraction, XRD, analysis of the metallic nucleus, it was shown that the structure consists of a mixture of crystalline and amorphous phases. The single and wide crystalline peak was attributed to a L21 crystalline structure (5.640 Å), with a possible B2 disorder. In addition, nanocrystalline structure with an average grain size, Dg = 17.8 nm, and crystalline phase content of about 52% was obtained. The magnetic measurements indicated a well-defined magnetic anisotropy for all ranges of temperature. Moreover, soft magnetic behavior was observed for the temperature measuring range of 5–1000 K. Strong dependence of the magnetic properties on the applied magnetic field and temperature was observed. Zero field cooling and field cooling magnetization curves showed large irreversibility magnetic behavior with a blocking temperature (TB = 205 K). The in-plane magnetization remanence and coercivity showed quite different behavior with temperature, due to the existence of different magnetic phases induced from the internal stress created by the glass-coated layer. Moreover, a high Curie temperature was reported (Tc ≈ 1059 K), which predisposes this material to being a suitable candidate for high temperature spintronic applications.
Funder
Spanish MCIU
EU
University of the Basque Country
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献