Investigating Organic Vapor Sensing Properties of Composite Carbon Nanotube-Zinc Oxide Nanowire

Author:

Shooshtari MostafaORCID,Pahlavan SaeidehORCID,Rahbarpour Saeideh,Ghafoorifard Hasan

Abstract

The low operating temperature of nanowire gas sensors along with their high surface-to-volume ratio are two factors that make gas sensors more practical. In this paper, the growth of ZnO nanowires on a vertically aligned CNT forest is reported. The utilized method for ZnO growth was a rapid microwave-assisted hydrothermal route, which facilitates low-temperature and ultra-fast fabrication. Organic vapor sensing properties of fabricated samples were studied in response to different alcoholic vapors at a wide operating temperature range of 25 to 300 °C. Enhancement of the gas response was observed with increasing operating temperature. Moreover, the effect of the ZnO nanowire length on organic vapor sensing properties of CNT-ZnO samples was investigated. Results proved that CNT-ZnO samples with long ZnO wires exhibit higher sensitivity to examined analytes. Different length ZnO nanowires were attained via variation of the microwave exposure time and power. Fabrication parameters were selected based on numerous runs. The length of ZnO synthesized at each distinct run was calculated based on SEM micrographs of the samples.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3