Fully Printed Organic Phototransistor Array with High Photoresponse and Low Power

Author:

Tan Yuan1,Zhang Xinwei1,Pan Rui1,Deng Wei1,Shi Jialin1,Lu Tianxing1,Zhang Junye1,Jie Jiansheng12,Zhang Xiujuan1

Affiliation:

1. Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China

2. Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR 999078, China

Abstract

Organic phototransistors (OPTs) as optical chemical sensors have progressed excitingly in recent years, mainly due to the development of new materials, new device structures, and device interfacial engineering. Exploiting the maximum potential of low-cost and high-throughput fabrication of organic electronics and optoelectronics requires devices that can be manufactured in a fully printed way that also have a low operation voltage. In this work, we demonstrate a fully printed fabrication process that enables the realization of a high-yield (~90%) and low-voltage OPT array. By solution printing of a high-quality organic crystalline thin film on the pre-printed electrodes, we create a van der Waals contact between the metal and organic semiconductor, resulting in a small subthreshold swing of 445 mV dec−1 with a signal amplification efficiency over 5.58 S A−1. Our OPTs thus exhibit both a low operation voltage of −1 V and a high photosensitivity over 5.7 × 105, making these devices suitable for a range of applications requiring low power consumption. We further demonstrate the capability of the low-voltage OPT array for imaging and show high imaging contrasts. These results indicate that our fabrication process may provide an entry into integrated and low-power organic optoelectronic circuits fabricated by scalable and cost-effective methods for real-world applications.

Funder

National Natural Science Foundation of China

Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3