Sodium Lauryl Sulfate-Conjugated Cationic Gemini-Surfactant-Capped Gold Nanoparticles as Model System for Biomolecule Recognition

Author:

Grueso Elia1ORCID,Giráldez-Pérez Rosa M.2ORCID,Prado-Gotor Rafael1ORCID,Kuliszewska Edyta3

Affiliation:

1. Department of Physical Chemistry, University of Seville, 41012 Seville, Spain

2. Faculty of Science, Department of Cellular Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain

3. Chemtra, 47-300 Krapkowize, Poland

Abstract

Surfactant-based nanostructures are promising materials for designing novel colorimetric biosensors based on aggregation/disaggregation phenomena. In this work, a colorimetric sensor based on the plasmonic shift of surfactant-capped gold nanoparticles via the disaggregation mechanism was developed. To perform this, the optimum SDS concentration was firstly determined in order to form Au@16-s-16/SDS complex aggregates with a well-defined SPR band in the blue region. Once the optimal SDS concentration for Au@16-s-16 aggregation was established, the sensing method depended on the nature of the electrostatic charge of the biopolymer studied where both the strength of the biopolymer/SDS and biopolymer/Au@16-s-16 interactions and the cationic gold nanoparticles play a key role in the disaggregation processes. As a result, an instantaneous color change from blue to red was gradually observed with increasing biopolymer concentrations. The response of the sensor was immediate, avoiding problems derived from time lapse, and highly dependent on the order of addition of the reagents, with a detection limit in the nanomolar and picomolar range for DNA and Lysozyme sensing, respectively. This behavior can be correlated with the formation of different highly stabilized Au@16-s-16/biopolymer/SDS complexes, in which the particular biopolymer conformation enhances the distance between Au@16-s-16 nanoparticles among the complexes.

Funder

Consejería de Economía, Conocimiento, Empresa y Universidad of Junta de Andalucía

VI PP USO SSGG

VII PP USO SSGG

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3