Design of Christmas-Tree-like Microfluidic Gradient Generators for Cell-Based Studies

Author:

Wang Yu-Hsun,Ping Chi-Hung,Sun Yung-ShinORCID

Abstract

Microfluidic gradient generators (MGGs) provide a platform for investigating how cells respond to a concentration gradient or different concentrations of a specific chemical. Among these MGGs, those based on Christmas-tree-like structures possess advantages of precise control over the concentration gradient profile. However, in designing these devices, the lengths of channels are often not well considered so that flow rates across downstream outlets may not be uniform. If these outlets are used to culture cells, such non-uniformity will lead to different fluidic shear stresses in these culture chambers. As a result, cells subject to various fluidic stresses may respond differently in aspects of morphology, attachment, alignment and so on. This study reports the rationale for designing Christmas-tree-like MGGs to attain uniform flow rates across all outlets. The simulation results suggest that, to achieve uniform flow rates, the lengths of vertical channels should be as long as possible compared to those of horizontal channels, and modifying the partition of horizontal channels is more effective than elongating the lengths of vertical channels. In addition, PMMA-based microfluidic chips are fabricated to experimentally verify these results. In terms of chemical concentrations, perfect linear gradients are observed in devices with modified horizontal channels. This design rationale will definitely help in constructing optimal MGGs for cell-based applications including chemotherapy, drug resistance and drug screening.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3