Effects of Vacancy Defects and the Adsorption of Toxic Gas Molecules on Electronic, Magnetic, and Adsorptive Properties of g−ZnO: A First-Principles Study

Author:

Shen YangORCID,Yuan Zhihao,Cui Zhen,Ma Deming,Yuan Pei,Yang Kunqi,Dong Yanbo,Wang Fangping,Li Enling

Abstract

Using first principles based on density functional theory (DFT), the CO, NH3, NO, and NO2 gas adsorbed on intrinsic Graphite-like ZnO (g−ZnO) and vacancy-deficient g−ZnO were systematically studied. For intrinsic g−ZnO, the adsorption energy of NH3, NO, and NO2 adsorption defective g−ZnO systems increased significantly due to the introduction of Zn vacancy (VZn). Especially, for NH3, NO, and NO2 adsorbed Zn-vacancy g−ZnO (VZn/g−ZnO) systems increased to 1.366 eV, 2.540 eV and 2.532 eV, respectively. In addition, with the introduction of vacancies, the adsorption height of the gases adsorbed on VZn/g−ZnO system is significantly reduced, especially the adsorption height of the NH3 adsorbed on VZn/g−ZnO system is reduced to 0.686 Å. It is worth mentioning that the introduction of O-vacancy (VO) significantly enhances the charge transfer between NO or NO2 and VO/g−ZnO. This suggest that the defective g−ZnO is more suitable for detecting NH3, NO and NO2 gas. It is interesting to note that the adsorption of NO and NO2 gases gives rise to magnetic moments of 1 μB and 0.858 μB for g−ZnO, and 1 μB and 1 μB for VO/g−ZnO. In addition, VZn induced 1.996 μB magnetic moments for intrinsic g−ZnO, and the CO, NH3, NO and NO2 change the magnetic of VZn/g−ZnO. The adsorption of NO2 causes the intrinsic g−ZnO to exhibit metallic properties, while the adsorption of NH3 gas molecules causes VZn/g−ZnO also to show metallic properties. The adsorption of NO and NO2 causes VZn/g−ZnO to display semi-metallic properties. These results facilitate the enrichment of defect detection means and the design of gas detection devices.

Funder

Natural Science Basic Research Program of Shaanxi

Scientific Research Program Funded by Shaanxi Provincial Education Department

Xi’an Science and Technology Project

Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology

College Students’ Innovative Entrepreneurial Training Plan Program

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3