Online Inertial Machine Learning for Sensor Array Long-Term Drift Compensation

Author:

Dong XiaoruiORCID,Han Shijing,Wang Ancheng,Shang Kai

Abstract

The sensor drift problem is objective and inevitable, and drift compensation has essential research significance. For long-term drift, we propose a data preprocessing method, which is different from conventional research methods, and a machine learning framework that supports online self-training and data analysis without additional sensor production costs. The data preprocessing method proposed can effectively solve the problems of sign error, decimal point error, and outliers in data samples. The framework, which we call inertial machine learning, takes advantage of the recent inertia of high classification accuracy to extend the reliability of sensors. We establish a reasonable memory and forgetting mechanism for the framework, and the choice of base classifier is not limited. In this paper, we use a support vector machine as the base classifier and use the gas sensor array drift dataset in the UCI machine learning repository for experiments. By analyzing the experimental results, the classification accuracy is greatly improved, the effective time of the sensor array is extended by 4–10 months, and the time of single response and model adjustment is less than 300 ms, which is well in line with the actual application scenarios. The research ideas and results in this paper have a certain reference value for the research in related fields.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drift Compensation of Wearable Textile Sensors in Mobile Applications;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

2. Embedded Retraining for Conductive Textile Sensor Calibration and Compensation;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

3. Mesoporous Co3O4 nanosheets with exposed Co2+-rich crystal facets for improved toluene detection;Applied Surface Science;2023-05

4. Assessing respiratory complications by carbon dioxide sensing platforms: Advancements in infrared radiation technology and IoT integration;Arabian Journal of Chemistry;2023-02

5. A Review of the High-Performance Gas Sensors Using Machine Learning;Machine Learning for Advanced Functional Materials;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3