Applications of the Photoionization Detector (PID) in Occupational Hygiene. Estimation of Air Changes per Hour in Premises with Natural Ventilation

Author:

Maeso-García María D.ORCID,Esteve-Turrillas Francesc A.ORCID,Verdú-Andrés JorgeORCID

Abstract

The importance of ventilation in closed workplaces increased after the onset of the COVID-19 pandemic. New methodologies for measuring the number of air changes per hour (ACH) in a premise where natural ventilation is applied are necessary. It is demonstrated how the ionic photoionization detector (PID) can be employed for tracer gas decay methodology using a volatile organic solvent (acetone). The methodology applied to calculate ACH in a naturally ventilated room, with various combinations of door and window openings, provides ACH values of between 2 and 17 h−1. Two classrooms were studied to verify if the minimum ventilation requirements recommended by official guidelines were met. The values for ACH on different days varied, mainly between 15 and 35 h−1, with some exceptional values higher than 40 h−1 on very windy days. These results agree with the quality air data recorded by the installed CO2 sensors, ensuring adequate hygienic conditions for the users of the rooms. The fast response of the PID allows the measurement of different locations in the room during the same assay, which provides additional information regarding the air distribution inside during the ventilation process. This methodology is fast and easy, and the necessary equipment is simple to obtain and use routinely, whether it is needed to measure several rooms or to monitor one room periodically.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference26 articles.

1. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

2. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality

3. Infection Prevention and Control during Health Care When Coronavirus Disease (COVID-19) Is Suspected or Confirmed https://www.who.int/publications/i/item/WHO-2019-nCoV-IPC-2021.1

4. Natural ventilation strategy and related issues to prevent coronavirus disease 2019 (COVID-19) airborne transmission in a school building

5. Real Decreto 1027/2007, de 20 de Julio, Por el Que se Aprueba el Reglamento de Instalaciones Térmicas en los Edificios https://www.boe.es/buscar/doc.php?id=BOE-A-2007-15820

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3