Abstract
Owing to harsh working environments and complex industrial requirements, traditional gas sensors are prone to deformation damage, possess a limited detection range, require a high working temperature, and display low reliability, thereby necessitating the development of flexible and low-temperature gas sensors. In this study, we developed a low-temperature polyimide (PI)-based flexible gas sensor comprising a reduced graphene oxide (rGO)/MoS2 composite. The micro-electro-mechanical system technology was used to fabricate Au electrodes on a flexible PI sheet to form a “sandwiched” sensor structure. The rGO/MoS2 composites were synthesized via a one-step hydrothermal method. The gas-sensing response was the highest for the composite comprising 10% rGO. The structure of this material was characterized, and a PI-based flexible gas sensor comprising rGO/MoS2 was fabricated. The optimal working temperature of the sensor was 141 °C, and its response-recovery time was significantly short upon exposure to 50–1500 ppm NH3. Thus, this sensor exhibited high selectivity and a wide NH3 detection range. Furthermore, it possessed the advantages of low power consumption, a short response-recovery time, a low working temperature, flexibility, and variability. Our findings provide a new framework for the development of pollutant sensors that can be utilized in an industrial environment.
Funder
National Key Research and Development Project
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献