Study on Physical and Mechanical Properties of High-Water Material Made by Seawater

Author:

Lu Bangwen12ORCID,Liu Changwu34,Guo Jungang12,Feng Naiqi12

Affiliation:

1. Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences (CAGS), Zhengzhou 450006, China

2. China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou 450006, China

3. College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

4. State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610065, China

Abstract

In maritime engineering, marine-derived construction materials are seen as an efficient and cost-effective alternative. HWM is a novel inorganic cementitious material characterized by its high water content, rapid setting, and early strengthening. In this study, first, HWM was proposed to be produced from seawater and used in a maritime environment. Two groups of HWM samples with varied w/c ratios were prepared with fresh water and seawater, and their behavior was examined to assess the viability of HWM produced with seawater. The microstructures and chemical compositions were studied using SEM and XRD. Results indicated that as the w/c ratio increased from 3:1 to 6:1, the water content, density, and uniaxial compressive strength of HWM produced from seawater varied from 72.1% to 77.5%; 1.25 to 1.12 g/cm3, and 1.47 MPa to 0.39 MPa, respectively, which is 2–10% lower, 0.8–2.2% higher, and 13–45% stronger than that from fresh water. The chemical composition of HWM mixed with seawater is predominantly composed of ettringite, C-S-H gel, aluminum (Al(OH)3) glue, M-S-H gel, and Mg(OH)2. SO42− and Mg2+ in seawater participate in the hydration and hardening of HWM, resulting in an increase in the synthesis of ettringite and M-S-H gel, which makes the skeletal structure of HWM denser, hence increasing its strength. HWM derived from seawater retains excellent physical and mechanical properties. This work reveals the HWM-seawater interaction mechanism, elucidates the promising application prospect of HWM in maritime engineering, and paves the way to investigate its field performance.

Funder

Geological Survey Program of China Geological Survey

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3