Development and Constitutive Model of Fluid–Solid Coupling Similar Materials

Author:

Li Baiping1,Cheng Yunhai1,Li Fenghui1

Affiliation:

1. School of Mining Engineering, Anhui University of Science and Technology, Huainan 232001, China

Abstract

The Cretaceous Zhidan group (K1zh) pore fissure-confined water aquifer in Yingpanhao Coal Mine, Ordos City, China, has loose stratum structure, high porosity, strong permeability and water conductivity. In order to explore the fluid–solid coupling similar material and its constitutive model suitable for the aquifer, a kind of fluid–solid coupling similar material with low strength, strong permeability and no disintegration in water was developed by using 5~20 mm stone as aggregate and P.O32.5 Portland cement as binder. The controllable range of uniaxial compressive strength is 0.394~0.528 MPa, and the controllable range of elastic modulus is 342.22~400.24 MPa. The stress–strain curve and elastic modulus of similar materials are analyzed. It is found that the elastic modulus of similar materials with different water–cement ratios conforms to the linear law, the elastic modulus of similar materials with the same water–cement ratio after soaking treatment and without soaking treatment also conforms to the linear law. Based on the material failure obeying the maximum principal stress criterion and Weibull distribution, combined with the elastic modulus fitting formula, a constitutive model suitable for the fluid–solid coupling similar material was established, and the parameters of the constitutive model were determined by differential method. By comparing the theoretical stress–strain curve with the experimental curve, it is found that the constitutive model can better describe and characterize the fluid–solid coupling similar materials with different water–cement ratios and before and after soaking.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference27 articles.

1. Fast drilling and blasting construction technology for deep high stress rock roadway;Zhang;J. China Coal Soc.,2011

2. Experimental study on physical model of synergistic effect between lining and surrounding rock of large buried tunnel under complex geological conditions;Ren;China Civ. Eng. J.,2019

3. Research progress of deep rock mechanics and mining theory;Xie;J. China Coal Soc.,2019

4. Water inrush mechanism for slip instability of filled karst conduit in tunnels;Huang;J. Cent. South Univ. (Sci. Technol.),2019

5. Model on variable weight−target approaching for risk assessment of water and mud inrush in intrusive contact tunnels;Li;J. Cent. South Univ. (Sci. Technol.),2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3