GIS-Based Soil Erosion Risk Assessment in the Watersheds of Bukidnon, Philippines Using the RUSLE Model

Author:

Dapin Indie G.12,Ella Victor B.2ORCID

Affiliation:

1. Department of Agricultural and Biosystems Engineering, College of Engineering, Central Mindanao University, Musuan, Maramag 8710, Philippines

2. Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, Los Baños 4031, Philippines

Abstract

The sustainability of watersheds for supplying water and for carbon sequestration and other environmental services depends to a large extent on their susceptibility to soil erosion, particularly under changing climate. This study aimed to assess the risk of soil erosion in the watersheds in Bukidnon, Philippines, determine the spatial distribution of soil loss based on recent land cover maps, and predict soil loss under various rainfall scenarios based on recently reported climate change projections. The soil erosion risk assessment and soil loss prediction made use of GIS and the RUSLE model, while the rainfall scenarios were formulated based on PAGASA’s prediction of drier years for Bukidnon in the early-future to late-future. Results showed that a general increase in soil loss was observed in 2015, over the period from 2010 to 2020, although some watershed clusters also showed a declining trend of soil erosion, particularly the Agusan-Cugman and Maridugao watershed clusters. Nearly 60% of Bukidnon has high to very severe soil loss rates. Under extreme rainfall change scenario with 12.61% less annual rainfall, the soil loss changes were only +1.37% and −2.87% in the category of none-to-slight and very severe, respectively. Results showed that a decrease in rainfall would have little effect on resolving the excessive soil erosion problem in Bukidnon. Results of this study suggest that having more vegetative land cover and employing soil conservation measures may prove to be effective in minimizing the risk of soil erosion in the watersheds. This study provides valuable information to enhance the sustainability of the watersheds. The erosion-prone areas identified will help decision-makers identify priority areas for soil conservation and environmental protection.

Funder

Department of Science and Technology—Science Education Institute

Engineering Research and Development for Technology (DOST-ERDT) of the Philippines

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3