The Effect of the Potamogeton crispus on Phosphorus Changes throughout Growth and Decomposition: A Comparison of Indoor and Outdoor Studies

Author:

Wang Lizhi1ORCID,Zhang Liying1,Song Hongli1,Dong Bin1,Wang Yun1,Yu Wanni1,Wu Yuanzhi1,Wu Xiaodong2ORCID,Ge Xuguang2

Affiliation:

1. Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276005, China

2. College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China

Abstract

Phosphorus (P) transport and transformation in water were investigated using Potamogeton crispus. To compare and evaluate our indoor experiment with outdoor data, we used the simultaneous indoor experiment and field observation approach. The effects of P. crispus growth and decomposition on P concentrations were investigated. P. crispus significantly reduced the P content of different forms in the water during the growth period, and significantly increased the P content of different forms in the water during the decomposition period, according to the findings. As a result, the P level of the water varied seasonally and regularly. The pH and dissolved oxygen (DO) of environmental factors in the water revealed an increasing trend during the P. crispus growth period and a negative trend during the decomposition period. The changing trend of chlorophyll a (Chl-a) and alkaline phosphatase activity (APA) was inverse, decreasing during the growth period of P. crispus and increasing during the decomposition period. In the P. crispus growth environment, all forms of P in water were positively related to Chl-a, APA, and pH, and negatively related to DO. The comparison of the indoor experiment with field data revealed that the indoor experiment number has a larger standard deviation, indicating that the indoor experiment data fluctuated substantially. The indoor simulation experiment has the disadvantage of large data fluctuation. As a result, this study demonstrated that P. crispus regulated the P cycle in water via absorption and changes in environmental factors during the growth period, and released nutrients via decomposition during the decomposition period, thereby influencing the migration and transformation of P in the water. This work may be used as a reference for future research into the process of P exchange between sediments and water interfaces caused by P. crispus.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province, China

Innovation and Entrepreneurship Training Program for College Students in Shandong Province, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3