Toward 30 m Fine-Resolution Land Surface Phenology Mapping at a Large Scale Using Spatiotemporal Fusion of MODIS and Landsat Data

Author:

Ruan Yongjian12,Ruan Baozhen1,Zhang Xinchang1ORCID,Ao Zurui3,Xin Qinchuan4ORCID,Sun Ying4ORCID,Jing Fengrui5

Affiliation:

1. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China

2. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources of China, Shenzhen 518034, China

3. Beidou Research Institute, Faculty of Engineering, South China Normal University, Foshan 528000, China

4. School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China

5. Geoinformation and Big Data Research Lab, Department of Geography, University of South Carolina, Columbia, SC 29208, USA

Abstract

Satellite-retrieved land surface phenology (LSP) is a first-order control on terrestrial ecosystem productivity, which is critical for monitoring the ecological environment and human and social sustainable development. However, mapping large-scale LSP at a 30 m resolution remains challenging due to the lack of dense time series images with a fine resolution and the difficulty in processing large volumes of data. In this paper, we proposed a framework to extract fine-resolution LSP across the conterminous United States using the supercomputer Tianhe-2. The proposed framework comprised two steps: (1) generation of the dense two-band enhanced vegetation index (EVI2) time series with a fine resolution via the spatiotemporal fusion of MODIS and Landsat images using ESTARFM, and (2) extraction of the long-term and fine-resolution LSP using the fused EVI2 dataset. We obtained six methods (i.e., AT, FOD, SOD, RCR, TOD and CCR) of fine-resolution LSP with the proposed framework, and evaluated its performance at both the site and regional scales. Comparing with PhenoCam-observed phenology, the start of season (SOS) derived from the fusion data using six methods of AT, FOD, SOD, RCR, TOD and CCR obtained r values of 0.43, 0.44, 0.41, 0.29, 0.46 and 0.52, respectively, and RMSE values of 30.9, 28.9, 32.2, 37.9, 37.8 and 33.2, respectively. The satellite-retrieved end of season (EOS) using six methods of AT, FOD, SOD, RCR, TOD and CCR obtained r values of 0.68, 0.58, 0.68, 0.73, 0.65 and 0.56, respectively, and RMSE values of 51.1, 53.6, 50.5, 44.9, 51.8 and 54.6, respectively. Comparing with the MCD12Q2 phenology, the satellite-retrieved 30 m fine-resolution LSP of the proposed framework can obtain more information on the land surface, such as rivers, ridges and valleys, which is valuable for phenology-related studies. The proposed framework can yield robust fine-resolution LSP at a large-scale, and the results have great potential for application into studies addressing problems in the ecological environmental at a large scale.

Funder

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3