Abstract
Due to the emergence of antibiotic resistance, phage-mediated biocontrol has become an attractive alternative for pathogen management in agriculture. While the infection characteristics of many phages can be adequately described using plaque assays and optical density, the results from phages of the apple pathogen Erwinia amylovora have low reproducibility with these techniques. Using quantitative real-time PCR (qPCR), the stage of the lytic cycle was determined through a combination of chloroform-based sampling, centrifugation, and DNase treatment. Monitoring the transition of phage genomes through the lytic cycle generates a molecular profile from which phage infection characteristics such as adsorption rate and burst size can be determined. To our knowledge, this is the first report of qPCR being used to determine these infection parameters. The characteristics of four different genera of Erwinia phages were determined. The phage ΦEa46-1-A1 was able to adsorb at a rate up to 6.6 times faster than ΦEa35-70 and ΦEa9-2. The low enrichment titer of ΦEa9-2 was shown to be due to the absence of lysis. The ΦEa46-1-A1 and ΦEa21-4 phages had the highest productivity, with burst sizes of 57 virions in 38 min and 185 virions in 98 min, respectively, suggesting these genera would make stronger candidates for the phage-mediated biocontrol of E. amylovora.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献