Genome and Karyotype Reorganization after Whole Genome Duplication in Free-Living Flatworms of the Genus Macrostomum

Author:

Zadesenets Kira S.,Jetybayev Ilyas Y.,Schärer Lukas,Rubtsov Nikolay B.

Abstract

The genus Macrostomum represents a diverse group of rhabditophoran flatworms with >200 species occurring around the world. Earlier we uncovered karyotype instability linked to hidden polyploidy in both M. lignano (2n = 8) and its sibling species M. janickei (2n = 10), prompting interest in the karyotype organization of close relatives. In this study, we investigated chromosome organization in two recently described and closely related Macrostomum species, M. mirumnovem and M. cliftonensis, and explored karyotype instability in laboratory lines and cultures of M. lignano (DV1/10, 2n = 10) and M. janickei in more detail. We revealed that three of the four studied species are characterized by karyotype instability, while M. cliftonensis showed a stable 2n = 6 karyotype. Next, we performed comparative cytogenetics of these species using fluorescent in situ hybridization (FISH) with a set of DNA probes (including microdissected DNA probes generated from M. lignano chromosomes, rDNA, and telomeric DNA). To explore the chromosome organization of the unusual 2n = 9 karyotype discovered in M. mirumnovem, we then generated chromosome-specific DNA probes for all chromosomes of this species. Similar to M. lignano and M. janickei, our findings suggest that M. mirumnovem arose via whole genome duplication (WGD) followed by considerable chromosome reshuffling. We discuss possible evolutionary scenarios for the emergence and reorganization of the karyotypes of these Macrostomum species and consider their suitability as promising animal models for studying the mechanisms and regularities of karyotype and genome evolution after a recent WGD.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3