A Sub-Clone of RAW264.7-Cells Form Osteoclast-Like Cells Capable of Bone Resorption Faster than Parental RAW264.7 through Increased De Novo Expression and Nuclear Translocation of NFATc1

Author:

Mira-Pascual Laia,Tran Anh N.,Andersson Göran,Näreoja TuomasORCID,Lång Pernilla

Abstract

The murine macrophage cell line RAW264.7 is extensively used as a progenitor to study osteoclast (OC) differentiation. RAW264.7 is a heterogeneous cell line, containing sub-clones with different abilities to form OCs. The aim of this study was to identify characteristics within the heterogeneous RAW264.7 cells that define sub-clones with an augmented ability to form bone-resorbing OCs (H9), as well as sub-clones representing non-OCs (J8). RAW264.7 sub-clones were isolated by single cell cloning. Selection was based on TRAP/cathepsin K expression in sub-clone cultures without added RANKL. Sub-clones before and after differentiation with RANKL were assayed for multiple OC-characteristics. Sub-clone H9 cells presented a higher expression of OC-markers in cultures without added RANKL compared to the parental RAW264.7. After 6 days of RANKL stimulation, sub-clone H9 cells had equal expression levels of OC-markers with RAW264.7 and formed OCs able to demineralize hydroxyapatite. However, sub-clone H9 cells displayed rapid differentiation of OC already at Day 2 compared to Day 4 from parental RAW264.7, and when cultured on plastic and on bone they were more efficient in resorption. This rapid differentiation was likely due to high initial expression/nuclear translocation of OC master transcription factor, NFATc1. In contrast to H9, J8 cells expressed initially very low levels of OC-markers, and they did not respond to RANKL-stimulation by developing OC-characteristics/OC-marker expression. Hence, H9 is an additional clone suitable for experimental setup requiring rapid differentiation of large numbers of OCs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3