Two Distinct C-Type Lysozymes in Goldfish: Molecular Characterization, Antimicrobial Potential, and Transcriptional Regulation in Response to Opposing Effects of Bacteria/Lipopolysaccharide and Dexamethasone/Leptin

Author:

Chen TingORCID,Rao Yingzhu,Li Jiaxi,Ren Chunhua,Tang Dongsheng,Lin Tiehao,Ji Jiatai,Chen Rong,Yan Aifen

Abstract

Lysozymes are key antimicrobial peptides in the host innate immune system that protect against pathogen infection. In this study, the full-length cDNAs of two c-type lysozymes (gfLyz-C1 and gfLyz-C2) were cloned from goldfish (Carassius auratus). The structural domains, three-dimensional structures, and amino acid sequences of gfLyz-C1 and gfLyz-C2 were highly comparable, as the two proteins shared 89.7% sequence identity. The gfLyz-C1 and gfLyz-C2 recombinant proteins were generated in the insoluble fractions of an Escherichia coli system. Based on the results of lysoplate and turbidimetric assays, gfLyz-C1 and gfLyz-C2 showed broad-spectrum antimicrobial properties with high levels of activity against Micrococcus lysodeikticus, Vibrio parahemolyticus, and Edwardsiella tarda, and relatively low activity against E. coli. Both gfLyz-C1 and gfLyz-C2 mRNAs were mainly expressed in the trunk kidney and head kidney, and gfLyz-C1 was expressed at much higher levels than gfLyz-C2 in the corresponding tissues. The expression of the gfLyz-C1 and gfLyz-C2 transcripts in the trunk kidney and head kidney was induced in these tissues by challenge with heat-inactivated E. coli and lipopolysaccharides (LPS), and the transcriptional responses of gfLyz-C1 were more intense. In goldfish primary trunk kidney cells, the levels of the gfLyz-C1 and gfLyz-C2 transcripts were upregulated by heat-inactivated E. coli, V. parahemolyticus, and E. tarda, as well as LPS, and downregulated by treatment with dexamethasone and leptins. Overall, this study may provide new insights that will improve our understanding of the roles of c-type lysozymes in the innate immunity of cyprinid fish, including the structural and phylogenetic characteristics, antimicrobial effects, and regulatory mechanism.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3