Modelling Structural Effect and Linkage on Carbon Emissions in China: An Environmentally Extended Semi-Closed Ghosh Input–Output Model

Author:

Nie Yongyou,Gao Yunhuan,He He

Abstract

The carbon emissions of sectors and households enabled by primary inputs have practical significance in reality. Considering the mutual effect between the industrial sector and the household, this paper firstly constructed an environmentally extended semi-closed Ghosh input–output model with an endogenized household sector to analyze the relationship between carbon emissions and the Chinese economy from the supply-side perspective. The structural decomposition analysis and the hypothetical extraction method were remodified to identify the supply-side driving effects of the changes in carbon emissions and investigate the net carbon linkage. The results show that the electricity, gas, and water supply sector was the key sector with the highest carbon emission intensity enabled by primary inputs. The household sector had an above 93% indirect effect of the enabled intensity, with its enabled intensity dropping significantly by more than 55% from 2007 to 2017. The operating surplus and mixed income caused 3214.67 Gt (34.17%) of the enabled emissions in 2017. The supply-side economic activity, measured by the value added per capita, was the main factor of the carbon emission growth, mainly attributed to the development of the manufacturing sector and the electricity, gas, and water supply sector. The emission intensity and allocation structure both brought a decrease in carbon emissions. The electricity, gas, and water supply sector and the manufacturing sector were the major sources of the supply-induced cross-sectoral input emissions, while the commercial and service sector and the household sector were the top source of supply-induced cross-sectoral output emissions. This paper sheds light on the policies of the carbon emission abatement and the adjustment of the allocation structure from the perspective of supply.

Funder

the Construction of Shanghai High-Level Local Colleges and Universities Project: Research Start-up Funds for High-Level Talent Introduction

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3