Octovalve Thermal Management Control for Electric Vehicle

Author:

Wray AlexORCID,Ebrahimi Kambiz

Abstract

In the pursuit of more efficient vehicles on the world’s roads, the vehicle thermal management system has become a limiting factor when it comes to EV range and battery life. In extreme climates, if the thermal system cannot pull down or warm up the EV powertrain in a timely manner, the battery is at serious risk of capacity loss or accelerated degradation. As waste heat is inherently limited with EVs, the way in which we provide the heat for warm-up must be as efficient as possible to reduce the load on the battery. In this paper, a revolutionary waste heat recovery (WHR) thermal management system designed by Tesla, nicknamed the ‘Octovalve’, is described, modelled, and simulated. This paper contributes to collective knowledge by presenting an in-depth breakdown of the key operating modes and outlining the potential benefits. Modelled in the multidomain Simulink Simscape software, the octovalve’s performance is directly compared to a typical EV WHR thermal management system. The system under analysis is shown to significantly reduce EV energy consumption and battery load during warm-up but at the cost of overall warm-up time. Unlike any other WHR system found in literature, this system has a heat pump with can perform air conditioning and heat pump tasks simultaneously, which is shown to have a remarkable impact on energy efficiency and battery life.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

1. Electric Cars Fend off Supply Challenges to More than Double Global Sales,2022

2. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range;Farrington,2000

3. Does Polarization Increase Lead to Capacity Fade?

4. An Experimental Study of a Lithium Ion Cell Operation at Low Temperature Conditions

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3