Abstract
In the pursuit of more efficient vehicles on the world’s roads, the vehicle thermal management system has become a limiting factor when it comes to EV range and battery life. In extreme climates, if the thermal system cannot pull down or warm up the EV powertrain in a timely manner, the battery is at serious risk of capacity loss or accelerated degradation. As waste heat is inherently limited with EVs, the way in which we provide the heat for warm-up must be as efficient as possible to reduce the load on the battery. In this paper, a revolutionary waste heat recovery (WHR) thermal management system designed by Tesla, nicknamed the ‘Octovalve’, is described, modelled, and simulated. This paper contributes to collective knowledge by presenting an in-depth breakdown of the key operating modes and outlining the potential benefits. Modelled in the multidomain Simulink Simscape software, the octovalve’s performance is directly compared to a typical EV WHR thermal management system. The system under analysis is shown to significantly reduce EV energy consumption and battery load during warm-up but at the cost of overall warm-up time. Unlike any other WHR system found in literature, this system has a heat pump with can perform air conditioning and heat pump tasks simultaneously, which is shown to have a remarkable impact on energy efficiency and battery life.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference31 articles.
1. Electric Cars Fend off Supply Challenges to More than Double Global Sales,2022
2. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range;Farrington,2000
3. Does Polarization Increase Lead to Capacity Fade?
4. An Experimental Study of a Lithium Ion Cell Operation at Low Temperature Conditions
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献