A Novel Tripod Methodology of Scrutinizing Two-Phase Fluid Snap-Off in Low Permeability Formations from the Microscopic Perspective

Author:

Bai XueORCID,Tian Jian,Jia Na,Shirif Ezeddin

Abstract

According to the requirements of carbon-neutral development, this study explores the comparison and new discussion of replacing nitrogen with carbon dioxide in the conventional two-phase microfluid flow. Thus, carbon dioxide application in various fields can be more precise and convenient. This research uses an artificially continuously tapering micro model to mimic the natural rock channel in low permeability formation, where the liquid imbibition process is entirely under surface tension-dominant. The tested capillary number decreased to 8.49 × 10−6, and the thinnest observed liquid film was reduced to 2 μm. The comparison results in two gas groups (nitrogen and carbon dioxide) show that CO2 gas fluid in microscopic porous media would have more tendency to snap off and leave fewer residual bubbles blocked between the constrictions. However, the N2 gas fluid forms smaller isolated gas bubbles after snap-off. By combining the experimental data and numerical output with the theoretical evolution equation by Beresnev and Deng and by Quevedo Tiznado et al., the results of interface radius, temporal capillary pressure, and velocity profiles for axisymmetric and continuously tapering models are presented and validated. Those findings create a paradigm for future studies of the evolution of microscopic multiphase fluid and enhance a deeper understanding of geological underground fluid properties for greenhouse gas storage and utilization in low permeability formations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3