Risk Analysis of HPEM Threats for Linear RF Channel with Pyramid Horn Antenna Based on System-Level SPICE Modeling

Author:

Du Chuanbao,Cui Zhitong,Mao Congguang,Tian Jin,Wu Wei,Chen Wei,Qiu Yang

Abstract

High power electromagnetics (HPEMs) pose a potential threatening risk to the wireless communication system, especially according to the main coupling path of the RF front-end channel. SPICE modeling of the responses coupled on the RF channel is crucial for the EM risk assessment, which helps us learn more about how the pulse conducts on the RF channel. A simplified linear RF channel with pyramid horn antenna is taken as an example by the selection of the key electronic modules of the actual wireless system. This paper proposes a system-level SPICE circuit model for the simplified RF channel according to the hybrid methods of the antenna electromagnetic simulation and SPICE modeling of the RF circuit. The equivalent circuits of the horn antenna illuminated by HPEMs are established with the Vector Fitting method based on Thevenin and Norton theorems. The short current response as the excitation files for the SPICE models are obtained by the commercial electromagnetic simulation of the horn antenna illuminated by Multiple HPEM environments. Equivalent circuits of a micro-strip bandpass filter are also derived with π type circuit structure based on the measured admittance data. Then we analyze the HPEM risk faced by the RF channel by considering multiple HPEM environments. The norm theory is utilized to analyze the waveform characteristics from electric fields of HPEMs to the responses of the RF channel. The ratios of the responses versus electric field for each norm are computed and the EM risk degree is ranked based on those results. The results demonstrate that high power microwave is the highest threatening risk for the linear RF channel compared to the other two HPEMs such as ultra-wide band, high altitude electromagnetic pulse. Finally, the flowchart of EM risk assessment is presented based on a previous analysis, which will benefit the EMC design in engineering.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference19 articles.

1. High-Power Electromagnetic Effects on Electronic System;Giri,2020

2. Classification of Intentional Electromagnetic Environments (IEME)

3. High-Altitude Electromagnetic Pulse Survivability Assessment of the Har-Ris RF-3200 Transceiver;Coburn,1992

4. Statistical analysis comparison of HEMP transient response of monopole antenna from facility and burst views

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3