Study of Centrifugal Stiffening on the Free Vibrations and Dynamic Response of Offshore Wind Turbine Blades

Author:

Algolfat AmnaORCID,Wang WeizhuoORCID,Albarbar AlhusseinORCID

Abstract

Due to their large and increasing size and the corrosive nature of salt water and high wind speeds, offshore wind turbines are required to be more robust, more rugged and more reliable than their onshore counterparts. The dynamic characteristics of the blade and its response to applied forces may be influenced dramatically by rotor rotational speed, which may even threaten the stability of the wind turbine. An accurate and computationally efficient structural dynamics model is essential for offshore wind turbines. A comprehensive model that takes the centrifugal stiffening effect into consideration could make rapid and accurate decisions with live data sensed from the structure. Moreover, this can enhance both the performance and reliability of wind turbines. When a rotating blade deflects in its plane of rotation or perpendicular to it, the centrifugal force exerts an inertia force that increases the natural frequencies and changes the mode shapes, leading to changes in the dynamic response of the blade. However, in the previous literature, studies of centrifugal stiffening are rarely found. This study investigates the influence of centrifugal stiffening on the free vibrations and dynamic response of offshore wind turbine blades. The National Renewable Energy Laboratory (NREL) 5 MW blade benchmark was considered to study the effect of angular speed in the flap-wise and edge-wise directions. The results demonstrate that the angular speed directly affects the modal features, which directly impacts the dynamic response. The results also show that the angular velocity effect in the flap-wise direction is more significant than its effect in the edge-wise direction.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3