An Experimental Analysis and ANN Based Parameter Optimization of the Influence of Microalgae Spirulina Blends on CI Engine Attributes

Author:

Kumar S. Charan,Thakur Amit Kumar,Aseer J. Ronald,Natarajan Sendhil Kumar,Singh RajeshORCID,Priyadarshi NeerajORCID,Twala BhekisiphoORCID

Abstract

In this present investigation, emittance and performance attributes of a diesel engine using micro-algae spirulina blended biodiesel mixtures of various concentrations (20%, 35%, 50%, 65%, 80%, and 100%) were evaluated. An optimization model was also developed using an Artificial Neural Network (ANN) to characterize the experimental parameters. Experimental findings demonstrated significant improvement in brake specific fuel consumption (BSFC) using varied blends. Furthermore, brake thermal efficiency (BTE) is decreased gradually for biodiesel blends as compared to diesel. Micro-algae spirulina blends have shown lower concentrations of NOX and HC while increasing CO2 relative to pure diesel. To develop the model, three sets of optimizers, namely, adam, nadam, and adagrad, along with activation functions, such as sigmoid, softmax, and relu, were selected. The results revealed that sigmoid activation function with adam learning optimizer by using 32 hidden layer neurons has given the least value of mean squared error (MSE). Hence, the ANN approach was proven to be capable of predicting engine attributes with a least mean squared error of 0.00013, 0.00060, 0.00021, 0.00011, and 0.00104 for NOX, HC, CO2, brake thermal efficiency, and brake specific fuel consumption, respectively. The Artificial Neural Network approach is capable of predicting CI engine attributes with accuracy and ease of investigation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3