Abstract
This article discusses the progress made in developing a new 3D-printed continuously variable transmission (CVT) for an electric vehicle (EV) prototype competing in the Shell Eco-marathon electric battery category, a global energy efficiency competition sponsored by Shell. The proposed system is composed of a polymeric conic gear assembled in the motor axle and directly coupled to the rear tire of the vehicle. The conical shape allows to implement a continuous variation of the gear diameter in contact with the tire. The motor with the gear was mounted over a board with linear bearings, allowing the speed ratio to change by moving the board laterally. A 3D-printing slicing software with an optimization algorithm plug-in was used to determine the best printing parameters for the conic gear based on the tangential force, maximum displacement and safety factor. When compared to the original part with a 100% infill density, the optimized solution reduced the component mass by about 12% while maintaining safe mechanical resistance and stiffness.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancements in automotive production: exploring the role of 3D printing and selective laser sintering;International Conference on Medical Imaging, Electronic Imaging, Information Technologies, and Sensors (MIEITS 2024);2024-06-26
2. The 3D-Printed Low-Cost Delta Robot Óscar: Technology Overview and Benchmarking;The 2nd International Electronic Conference on Applied Sciences;2021-10-15