Abstract
High tibial osteotomy (HTO) represents a sensible treatment option for patients with moderate unicondylar osteoarthritis of the knee and extraarticular malalignment. The possibility of a continuously variable correction setting and a surgical approach low in complications has meant that the medial opening osteotomy has prevailed over the past decades. The objective of the present study was to determine whether anteromedially positioned small plates are nevertheless forgiving under biomechanically unfavourable conditions (overcorrection and lateral hinge fracture). In this study, a simulated HTO was performed on composite tibiae with a 10-mm wedge and fixed-angle anteromedial osteosynthesis with a small implant. Force was applied axially in a neutral mechanical axis, a slight and a marked overcorrection into valgus, with and without a lateral hinge fracture in each case. At the same time, a physiological gait with a dual-peak force profile and a peak load of 2.4 kN was simulated. Interfragmentary motion and rigidity were determined. The rigidity of the osteosynthesis increased over the cycles investigated. A slight overcorrection into valgus led to the lowest interfragmentary motion, compared with pronounced valgisation and neutral alignment. A lateral hinge fracture led to a significant decrease in rigidity and increase in interfragmentary motion. However, in no case was the limit of 1 mm interfragmentary motion critical for osteotomy healing exceeded. The degree of correction of the leg axis, and the presence of a lateral hinge fracture, have an influence on rigidity and interfragmentary motion. From a mechanically neutral axis ranging up to pronounced overcorrection, the implant investigated offers sufficient stability to allow healing of the osteotomy, even if a lateral hinge fracture is present.
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics