Abstract
Biochemistry on Earth makes use of the key elements carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur (or CHONPS). Chemically accessible molecules containing these key elements would presumably have been necessary for prebiotic chemistry and the origins of life on Earth. For example, feedstock molecules including fixed nitrogen (e.g., ammonia, nitrite, nitrate), accessible forms of phosphorus (e.g., phosphate, phosphite, etc.), and sources of sulfur (e.g., sulfide, sulfite) may have been necessary for the origins of life, given the biochemistry seen in Earth life today. This review describes potential sources of nitrogen-, sulfur-, and phosphorus-containing molecules in the context of planetary environments. For the early Earth, such considerations may be able to aid in the understanding of our own origins. Additionally, as we learn more about potential environments on other planets (for example, with upcoming next-generation telescope observations or new missions to explore other bodies in our Solar System), evaluating potential sources for elements necessary for life (as we know it) can help constrain the potential habitability of these worlds.
Funder
National Aeronautics and Space Administration
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献