A Deep Learning-Based Emergency Alert Wake-Up Signal Detection Method for the UHD Broadcasting System

Author:

Song Jin-Hyuk12ORCID,Baek Myung-Sun2,Bae Byungjun2ORCID,Song Hyoung-Kyu13ORCID

Affiliation:

1. Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea

3. Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea

Abstract

With the increasing frequency and severity of disasters and accidents, there is a growing need for efficient emergency alert systems. The ultra-high definition (UHD) broadcasting service based on Advanced Television Systems Committee (ATSC) 3.0, a leading terrestrial digital broadcasting system, offers such capabilities, including a wake-up function for minimizing damage through early alerts. In case of a disaster situation, the emergency alert wake-up signal is transmitted, allowing UHD TVs to be activated, enabling individuals to receive emergency alerts and access emergency broadcasting content. However, conventional methods for detecting the bootstrap signal, essential for this function, typically require an ATSC 3.0 demodulator. In this paper, we propose a novel deep learning-based method capable of detecting an emergency wake-up signal without the need for an ATSC 3.0. The proposed method leverages deep learning techniques, specifically a deep neural network (DNN) structure for bootstrap detection and a convolutional neural network (CNN) structure for wake-up signal demodulation and to detect the bootstrap and 2 bit emergency alert wake-up signal. Specifically, our method eliminates the need for Fast Fourier Transform (FFT), frequency synchronization, and interleaving processes typically required by a demodulator. By applying a deep learning in the time domain, we simplify the detection process, allowing for the detection of an emergency alert signal without the full suite of demodulator components required for ATSC 3.0. Furthermore, we have verified the performance of the deep learning-based method using ATSC 3.0-based RF signals and a commercial Software-Defined Radio (SDR) platform in a real environment.

Funder

Korea government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3