A Within-Subject Multimodal NIRS-EEG Classifier for Infant Data

Author:

Gemignani Jessica12ORCID,Gervain Judit123ORCID

Affiliation:

1. Department of Developmental and Social Psychology, University of Padua, Via Venezia, 8, 35131 Padua, Italy

2. Padova Neuroscience Center, 35131 Padua, Italy

3. Integrative Neuroscience and Cognition Center, Université Paris Cité & CNRS, 75006 Paris, France

Abstract

Functional Near Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) are commonly employed neuroimaging methods in developmental neuroscience. Since they offer complementary strengths and their simultaneous recording is relatively easy, combining them is highly desirable. However, to date, very few infant studies have been conducted with NIRS-EEG, partly because analyzing and interpreting multimodal data is challenging. In this work, we propose a framework to carry out a multivariate pattern analysis that uses an NIRS-EEG feature matrix, obtained by selecting EEG trials presented within larger NIRS blocks, and combining the corresponding features. Importantly, this classifier is intended to be sensitive enough to apply to individual-level, and not group-level data. We tested the classifier on NIRS-EEG data acquired from five newborn infants who were listening to human speech and monkey vocalizations. We evaluated how accurately the model classified stimuli when applied to EEG data alone, NIRS data alone, or combined NIRS-EEG data. For three out of five infants, the classifier achieved high and statistically significant accuracy when using features from the NIRS data alone, but even higher accuracy when using combined EEG and NIRS data, particularly from both hemoglobin components. For the other two infants, accuracies were lower overall, but for one of them the highest accuracy was still achieved when using combined EEG and NIRS data with both hemoglobin components. We discuss how classification based on joint NIRS-EEG data could be modified to fit the needs of different experimental paradigms and needs.

Funder

Marie Curie Individual Fellowship EF-ST

ERC Consolidator Grant

Ecos-Sud

Italian Ministry for Universities and Research

Italian Ministry for Universities and Research PRIN

Ministero della Salute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3