Single-Shot Direct Transmission Terahertz Imaging Based on Intense Broadband Terahertz Radiation

Author:

Yue Zhang12,Peng Xiaoyu12,Li Guangyuan12,Zhou Yilei12,Pu Yezi12ORCID,Zhang Yuhui12

Affiliation:

1. Center of Quantum Information Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

2. Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China

Abstract

There are numerous applications of terahertz (THz) imaging in many fields. However, current THz imaging is generally based on scanning technique due to the limited intensity of the THz sources. Thus, it takes a long time to obtain a frame image of the target and cannot meet the requirement of fast THz imaging. Here, we demonstrate a single-shot direct THz imaging strategy based on a broadband intense THz source with a frequency range of 0.1~23 THz and a THz camera with a frequency response range of 1~7 THz. This THz source was generated from the laser–plasma interaction, with its central frequency at ~12 THz. The frame rate of this imaging system was 8.5 frames per second. The imaging resolution reached 146.2 μm. With this imaging system, a single-shot THz image for a target object with a size of more than 7 cm was routinely obtained, showing a potential application for fast THz imaging. Furthermore, we proposed and tested an image enhancement algorithm based on an improved dark channel prior (DCP) theory and multi-scale retinex (MSR) theory to optimize the image brightness, contrast, entropy and peak signal-to-noise ratio (PSNR).

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China—Chinese Academy of Engineering Physics NSAF Joint Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3