The Caputo Nonlocal Structural Derivative Ultraslow Diffusion Model of Language Change and the Microscopic Mechanism

Author:

Xu Wei1,Liu Hui1,Liang Yingjie23,Zhao Shijun1

Affiliation:

1. School of Science, Qingdao University of Technology, Qingdao 266525, China

2. College of Mechanics and Materials, Hohai University, Nanjing 211100, China

3. Institute of Physics & Astronomy, University of Potsdam, Golm, 14476 Potsdam, Germany

Abstract

Numerous studies have observed and analyzed the dynamics of language change from a diffusion perspective. As a complex and changeable system, the process of language change is characterized by a long memory that conforms to ultraslow diffusion. However, it is not perfectly suited for modeling with the traditional diffusion model. The Caputo nonlocal structural derivative is a further development of the classic Caputo fractional derivative. Its kernel function, characterized as an arbitrary function, proves highly effective in dealing with ultraslow diffusion. In this study, we utilized an extended logarithmic function to formulate a Caputo nonlocal structural derivative diffusion model for qualitatively analyzing the evolution process of language. The mean square displacement that grows logarithmically was derived through the Tauberian theorem and the Fourier–Laplace transform. Its effectiveness and credibility were verified by the appearance of already popular words on Japanese blogs. Compared to the random diffusion model, the Caputo nonlocal structural derivative diffusion model proves to be more precise in simulating the process of language change. The microscopic mechanism of ultraslow diffusion was explored using the continuous time random walk model, which involves a logarithmic function with a long tail. Both models incorporate memory effects, which can provide useful guidance for modeling diffusion behavior in other social phenomena.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3