Full-Scale Pore Structure Characterization and Its Impact on Methane Adsorption Capacity and Seepage Capability: Differences between Shallow and Deep Coal from the Tiefa Basin in Northeastern China

Author:

Zhang Na12,Wang Shuaidong12,Wu Jiaqi12,Li Zheng12,Wang Xinyue12

Affiliation:

1. State Key Laboratory for GeoMechanics and Deep Underground Engineering, Beijing 100083, China

2. School of Mechanics, Architecture and Civil Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

Deep low-rank coalbed methane (CBM) resources are numerous and widely distributed in China, although their exploration remains in its infancy. In this work, gas adsorption (N2/CO2), mercury intrusion porosimetry, and 3D CT reconstruction were performed on five coal samples of deep and shallow low-rank coal from northeast China to analyze their pore structure. The impact of the features in the pore structure at full scale on the capacity for methane adsorption and seepage is discussed. The results indicate that there are significant differences between deep low-rank coal and shallow low-rank coal in terms of porosity, permeability, composition, and adsorption capacity. The full-scale pore distribution was dispersed over a broad range and exhibited a multi-peak distribution, with the majority of the peak concentrations occurring between 0.45–0.7 nm and 3–4 nm. Mesopores are prevalent in shallow coal rock, whereas micropores are the most numerous in deep coal rock. The primary contributors to the specific surface area of both deep and superficial coal rock are micropores. Three-dimensional CT reconstruction can characterize pores with pore size greater than 1 μm, while the dominating equivalent pore diameters (Deq) range from 1 to 10 μm. More mini-scale pores and fissures are observed in deep coal rock, while shallow coal rock processes greater total and connection porosity. Multifractal features are prevalent in the fractal qualities of all the numbered samples. An enhancement in pore structure heterogeneity occurs with increasing pore size. The pore structure of deep coal rock is more heterogeneous. Furthermore, methane adsorption capacity is favorably connected with D1 (0.4 nm < pore diameter ≤ 2 nm), D2 (2 nm < pore diameter ≤ 5 nm), micropore volume, and specific surface area and negatively correlated with D3 (5 nm < pore diameter ≤ 50 nm), showing that methane adsorption capability is primarily controlled by micropores and mesopores. Methane seepage capacity is favorably connected with the pore volume and connected porosity of macropores and negatively correlated with D4 (pore diameter > 50 nm), indicating that the macropores are the primary factor influencing methane seepage capacity.

Funder

National Natural Science Foundation of China

Innovation Fund Research of China University of Mining & Technology, Beijing

Fundamental Research Funds for the Central Universities of China

Undergraduate Innovation Program of China University of Mining & Technology, Beijing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3