On Fuzzy and Crisp Solutions of a Novel Fractional Pandemic Model

Author:

Umapathy Kalpana1,Palanivelu Balaganesan1,Leiva Víctor2ORCID,Dhandapani Prasantha Bharathi3ORCID,Castro Cecilia4ORCID

Affiliation:

1. Department of Mathematics, AMET Deemed to be University, Chennai 603112, Tamil Nadu, India

2. School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile

3. Department of Mathematics, Sri Eshwar College of Engineering, Coimbatore 641202, Tamil Nadu, India

4. Centre of Mathematics, Universidade do Minho, 4710-057 Braga, Portugal

Abstract

Understanding disease dynamics is crucial for accurately predicting and effectively managing epidemic outbreaks. Mathematical modeling serves as an essential tool in such understanding. This study introduces an advanced susceptible, infected, recovered, and dead (SIRD) model that uniquely considers the evolution of the death parameter, alongside the susceptibility and infection states. This model accommodates the varying environmental factors influencing disease susceptibility. Moreover, our SIRD model introduces fractional changes in death cases, which adds a novel dimension to the traditional counts of susceptible and infected individuals. Given the model’s complexity, we employ the Laplace-Adomian decomposition method. The method allows us to explore various scenarios, including non-fuzzy non-fractional, non-fuzzy fractional, and fuzzy fractional cases. Our methodology enables us to determine the model’s equilibrium positions, compute the basic reproduction number, confirm stability, and provide computational simulations. Our study offers insightful understanding into the dynamics of pandemic diseases and underscores the critical role that mathematical modeling plays in devising effective public health strategies. The ultimate goal is to improve disease management through precise predictions of disease behavior and spread.

Funder

National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology, Knowledge, and Innovation

Portuguese funds through the CMAT-Research Centre of Mathematics of University of Minho

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3