Abstract
Many physical phenomena give rise to mathematical models in terms of fractal, non-differentiable functions. The paper introduces a broad generalization of the derivative in terms of the maximal modulus of continuity of the primitive function. These derivatives are called indicial derivatives. As an application, the indicial derivatives are used to characterize the nowhere monotonous functions. Furthermore, the non-differentiability set of such derivatives is proven to be of measure zero. As a second application, the indicial derivative is used in the proof of the Lebesgue differentiation theorem. Finally, the connection with the fractional velocities is demonstrated.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Reference15 articles.
1. Recherches sur quelques points de la théorie des fonctions dérivées qui condiusent à une nouvelle démonstration de la série de Taylor, et à l’expression finie des termes qu’on néglige lorsqu’on arrête cette série à unterme quelconque;Ampére;J. Ecole Polytech.,1806
2. Math’s beautiful monsters;Kucharski;Nautilus,2014
3. Fractal Geometry of Nature;Mandelbrot,1982
4. Characterization of strongly non-linear and singular functions by scale space analysis
5. Fractional Velocity as a Tool for the Study of Non-Linear Problems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hölder Derivative of the Koch Curve;Journal of Applied Mathematics and Physics;2023