Consensus of Fractional-Order Double-Integral Multi-Agent System in a Bounded Fluctuating Potential

Author:

Chen Xi,Luo Maokang,Zhang LuORCID

Abstract

At present, the consensus problem of fractional complex systems has received more attention. However, there is little literature on the consensus problem of fractional-order complex systems under noise disturbance. In this paper, we present a fractional-order double-integral multi-agent system affected by a common bounded fluctuating potential, where the protocol term consists of both the relative position and velocity information of neighboring agents. The consensus conditions of the presented system in the absence of noise are analytically given and verified by a numerical simulation algorithm. Then, the influences of the system order and other system parameters on the consensus of the presented system in the presence of bounded noise are also analyzed. It is found that when compared with the classical integer-order system, the presented fractional-order system has a larger range of consensus parameters and has more rich dynamic characteristics under the action of random noise. Especially, the bounded noise has a promoting effect on the consensus of the presented fractional-order system, while there is no similar phenomenon in the corresponding integer-order system.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference41 articles.

1. Thinking in Complexity: The Complex Dynamics of Matter, Mind and Man-Kind;Mainzer,1997

2. Complexity and Criticality;Christen,2006

3. Complex dynamical behavior and modified projective synchronization in fractional-order hyper-chaotic complex Lü system

4. An Introduction to Multi-Agent Systems;Wooldrideg,2003

5. Stabilization and synchronization for a heterogeneous multi-agent system via harmonic control

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3