Abstract
In this paper, the Fourier spectral method is used to solve the fractional-in-space nonlinear coupled FitzHugh–Nagumo model.Numerical simulation is carried out to elucidate the diffusion behavior of patterns for the fractional 2D and 3D FitzHugh–Nagumo model. The results of numerical experiments are consistent with the theoretical results of other scholars, which verifies the accuracy of the method. We show that stable spatio-temporal patterns can be sustained for a long time; these patterns are different from any previously obtained in numerical studies. Here, we show that behavior patterns can be described well by the fractional FitzHugh–Nagumo and Gray–Scott models, which have unique properties that integer models do not have. Results show that the Fourier spectral method has strong competitiveness, reliability, and solving ability for solving 2D and 3D fractional-in-space nonlinear reaction-diffusion models.
Funder
Natural Science Foundation of Inner Mongolia
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献