Author:
Lapidus Michel,Lũ’ Hùng,Frankenhuijsen Machiel
Abstract
The theory of complex dimensions describes the oscillations in the geometry (spectra and dynamics) of fractal strings. Such geometric oscillations can be seen most clearly in the explicit volume formula for the tubular neighborhoods of a p-adic fractal string L p , expressed in terms of the underlying complex dimensions. The general fractal tube formula obtained in this paper is illustrated by several examples, including the nonarchimedean Cantor and Euler strings. Moreover, we show that the Minkowski dimension of a p-adic fractal string coincides with the abscissa of convergence of the geometric zeta function associated with the string, as well as with the asymptotic growth rate of the corresponding geometric counting function. The proof of this new result can be applied to both real and p-adic fractal strings and hence, yields a unifying explanation of a key result in the theory of complex dimensions for fractal strings, even in the archimedean (or real) case.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献