Comb Model with Non-Static Stochastic Resetting and Anomalous Diffusion

Author:

Antonio Faustino dos Santos MaikeORCID

Abstract

Nowadays, the stochastic resetting process is an attractive research topic in stochastic process. At the same time, a series of researches on stochastic diffusion in complex structures introduced ways to understand the anomalous diffusion in complex systems. In this work, we propose a non-static stochastic resetting model in the context of comb structure that consists of a structure formed by backbone in x axis and branches in y axis. Then, we find the exact analytical solutions for marginal distribution concerning x and y axis. Moreover, we show the time evolution behavior to mean square displacements (MSD) in both directions. As a consequence, the model revels that until the system reaches the equilibrium, i.e., constant MSD, there is a Brownian diffusion in y direction, i.e., ⟨ ( Δ y ) 2 ⟩ ∝ t , and a crossover between sub and ballistic diffusion behaviors in x direction, i.e., ⟨ ( Δ x ) 2 ⟩ ∝ t 1 2 and ⟨ ( Δ x ) 2 ⟩ ∝ t 2 respectively. For static stochastic resetting, the ballistic regime vanishes. Also, we consider the idealized model according to the memory kernels to investigate the exponential and tempered power-law memory kernels effects on diffusive behaviors. In this way, we expose a rich class of anomalous diffusion process with crossovers among them. The proposal and the techniques applied in this work are useful to describe random walkers with non-static stochastic resetting on comb structure.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crossover from anomalous to normal diffusion: Ising model with stochastic resetting;Physical Review Research;2024-08-19

2. Beta Brownian motion;Journal of Physics A: Mathematical and Theoretical;2024-05-17

3. On a diffusion which stochastically restarts from moving random spatial positions: a non-renewal framework;Journal of Physics A: Mathematical and Theoretical;2023-11-20

4. Random Walks on Comb-like Structures under Stochastic Resetting;Entropy;2023-11-09

5. Fractal calculus approach to diffusion on fractal combs;Chaos, Solitons & Fractals;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3