Some Properties of Normalized Tails of Maclaurin Power Series Expansions of Sine and Cosine

Author:

Zhang Tao1ORCID,Yang Zhen-Hang2ORCID,Qi Feng345ORCID,Du Wei-Shih6ORCID

Affiliation:

1. School of Mathematics and Information Science, Yantai University, Yantai 264005, China

2. Department of Science and Technology, State Grid Zhejiang Electric Power Company Research Institute, Hangzhou 310014, China

3. School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, China

4. School of Mathematics and Physics, Hulunbuir University, Hulunbuir 021008, China

5. Independent Researcher, University Village, Dallas, TX 75252, USA

6. Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan

Abstract

In the paper, the authors introduce two notions, the normalized remainders, or say, the normalized tails, of the Maclaurin power series expansions of the sine and cosine functions, derive two integral representations of the normalized tails, prove the nonnegativity, positivity, decreasing property, and concavity of the normalized tails, compute several special values of the Young function, the Lommel function, and a generalized hypergeometric function, recover two inequalities for the tails of the Maclaurin power series expansions of the sine and cosine functions, propose three open problems about the nonnegativity, positivity, decreasing property, and concavity of a newly introduced function which is a generalization of the normalized tails of the Maclaurin power series expansions of the sine and cosine functions. These results are related to the Riemann–Liouville fractional integrals.

Funder

National Nature Science Foundation of China

National Science and Technology Council of the Republic of China

Publisher

MDPI AG

Reference20 articles.

1. Cooke, R., and Octavio Paniagua, T. (2016). Mathematical Analysis II, Springer. [2nd ed.].

2. Apostol, T.M. (1967). Calculus, Blaisdell Publishing Co. [Ginn and Co.]. [2nd ed.].

3. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. (1954). Tables of Integral Transforms, McGraw-Hill Book Co., Inc.. Based, in part, on notes left by Harry Bateman.

4. Temme, N.M. (1996). Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc.

5. Integral representations and inequalities of extended central binomial coefficients;Wei;Math. Methods Appl. Sci.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3