A Hybrided Method for Temporal Variable-Order Fractional Partial Differential Equations with Fractional Laplace Operator

Author:

Wang Chengyi1,Yi Shichao12ORCID

Affiliation:

1. School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. Yangzijiang Shipbuilding Group, Taizhou 212299, China

Abstract

In this paper, we present a more general approach based on a Picard integral scheme for nonlinear partial differential equations with a variable time-fractional derivative of order α(x,t)∈(1,2) and space-fractional order s∈(0,1), where v=u′(t) is introduced as the new unknown function and u is recovered using the quadrature. In order to get rid of the constraints of traditional plans considering the half-time situation, integration by parts and the regularity process are introduced on the variable v. The convergence order can reach O(τ2+h2), different from the common L1,2−α schemes with convergence rate O(τ2,3−α(x,t)) under the infinite norm. In each integer time step, the stability, solvability and convergence of this scheme are proved. Several error results and convergence rates are calculated using numerical simulations to evidence the theoretical values of the proposed method.

Funder

National Treasury-High Level University Summit Program-Existing Master’s Degree Programs in the School of Science

Publisher

MDPI AG

Reference22 articles.

1. Podlubny, I. (1999). Fractional Differential Equations, Academic Press.

2. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland.

3. Baleanu, D., Diethelm, K., Scalas, E., and Trujillo, J.J. (2012). Fractional Calculus Models and Numerical Methods, World Scientific. Series on Complexity, Nonlinearity and Chaos.

4. A new collection of real world applications of fractional calculus in science and engineering;Sun;Commun. Nonlinear Sci. Numer. Simul.,2018

5. A space–time spectral method for the time fractional diffusion equation;Li;SIAM J. Numer. Anal.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3