Magnetically Suspended Control Sensitive Gyroscope Rotor High-Precision Deflection Decoupling Method using Quantum Neural Network and Fractional-Order Terminal Sliding Mode Control

Author:

Ren Yuan1,Li Lei2ORCID,Wang Weijie3,Wang Lifen3,Pang Weikun2

Affiliation:

1. Department of Basic Course, Space Engineering University, Beijing 101400, China

2. Graduate school, Space Engineering University, Beijing 101400, China

3. Department of Astronautical Science and Technology, Space Engineering University, Beijing 101400, China

Abstract

To achieve high-precision deflection control of a Magnetically Suspended Control and Sensitive Gyroscope rotor under high dynamic conditions, a deflection decoupling method using Quantum Radial Basis Function Neural Network and fractional-order terminal sliding mode control is proposed. The convergence speed and time complexity of the neural network controller limit the control accuracy and stability of rotor deflection under high-bandwidth conditions. To solve the problem, a quantum-computing-based structure optimization method for the Radial Basis Function Neural Network is proposed for the first time, where the input and the center of hidden layer basis function of the neural network are quantum-coded, and quantum rotation gates are designed to replace the Gaussian function. The parallel characteristic of quantum computing is utilized to reduce the time complexity and improve the convergence speed of the neural network. On top of that, in order to further address the issue of input jitter, a fractional-order terminal sliding mode controller based on the Quantum Radial Basis Function Neural Network is designed, the fractional-order differential sliding mode surface and the fractional-order convergence law are proposed to reduce the input jitter and achieve finite-time convergence of the controller, and the Quantum Radial Basis Function Neural Network is used to approximate the residual coupling and external disturbances of the system, resulting in improving the rotor deflection control accuracy. The semi-physical simulation experiments demonstrate the effectiveness and superiority of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3