An Improved Rock Resistivity Model Based on Multi-Fractal Characterization Method for Sandstone Micro-Pore Structure Using Capillary Pressure

Author:

Xie Weibiao12ORCID,Yin Qiuli12,Zeng Jingbo3,Yang Fan3,Zhang Pan1,Yan Binpeng1

Affiliation:

1. School of Petroleum, China University of Petroleum (Beijing) at Karamay, Karamay 834000, China

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China

3. China Petroleum Logging Co., Ltd., Xi’an 710000, China

Abstract

Micro-pore structures are an essential factor for the electrical properties of porous rock. Theoretical electrical conductivity models considering pore structure can highly improve the accuracy of reservoir estimation. In this study, a pore structure characterization method based on a multi-fractal theory using capillary pressure is developed. Next, a theoretical electrical conductivity equation is derived based on the new pore structure characterization method. Furthermore, a distinct interrelationship between fractal dimensions of capillary pressure curves (Dv) and of resistivity index curves (Dt and Dr) is obtained. The experimental data of 7 sandstone samples verify that the fitting result by the new pore structure characterization method is highly identical to the experimental capillary pressure curves, and the accuracy of the improved rock resistivity model is higher than the Archie model. In addition, capillary pressure curves can be directly converted to resistivity index curves according to the relationship model between fractal dimensions of capillary pressure curves (Dv) and resistivity index curves (Dt and Dr). This study provides new ideas to improve the accuracy of pore structure characterization and oil saturation calculation; it has good application prospects and guiding significance in reservoir evaluation and rock physical characteristics research.

Funder

Research Foundation of China University of Petroleum-Beijing at Karamay

Research Foundation of Karamay, China

“Tianchi Talent” Introduction Plan Foundation of Xinjiang

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3