Chaos, Fractionality, Nonlinear Contagion, and Causality Dynamics of the Metaverse, Energy Consumption, and Environmental Pollution: Markov-Switching Generalized Autoregressive Conditional Heteroskedasticity Copula and Causality Methods

Author:

Bildirici Melike1ORCID,Ersin Özgür Ömer2ORCID,Ibrahim Blend3ORCID

Affiliation:

1. Department of Economics, Faculty of Economics and Administrative Sciences, Davutpaşa Campus, Yıldız Technical University, Istanbul 34220, Türkiye

2. Department of International Trade, Faculty of Business, Sütlüce Campus, İstanbul Ticaret University, Istanbul 34445, Türkiye

3. Department of Business, Faculty of Business, Sütlüce Campus, İstanbul Ticaret University, Istanbul 34445, Türkiye

Abstract

Metaverse (MV) technology introduces new tools for users each day. MV companies have a significant share in the total stock markets today, and their size is increasing. However, MV technologies are questioned as to whether they contribute to environmental pollution with their increasing energy consumption (EC). This study explores complex nonlinear contagion with tail dependence and causality between MV stocks, EC, and environmental pollution proxied with carbon dioxide emissions (CO2) with a decade-long daily dataset covering 18 May 2012–16 March 2023. The Mandelbrot–Wallis and Lo’s rescaled range (R/S) tests confirm long-term dependence and fractionality, and the largest Lyapunov exponents, Shannon and Havrda, Charvât, and Tsallis (HCT) entropy tests followed by the Kolmogorov–Sinai (KS) complexity measure confirm chaos, entropy, and complexity. The Brock, Dechert, and Scheinkman (BDS) test of independence test confirms nonlinearity, and White‘s test of heteroskedasticity of nonlinear forms and Engle’s autoregressive conditional heteroskedasticity test confirm heteroskedasticity, in addition to fractionality and chaos. In modeling, the marginal distributions are modeled with Markov-Switching Generalized Autoregressive Conditional Heteroskedasticity Copula (MS-GARCH–Copula) processes with two regimes for low and high volatility and asymmetric tail dependence between MV, EC, and CO2 in all regimes. The findings indicate relatively higher contagion with larger copula parameters in high-volatility regimes. Nonlinear causality is modeled under regime-switching heteroskedasticity, and the results indicate unidirectional causality from MV to EC, from MV to CO2, and from EC to CO2, in addition to bidirectional causality among MV and EC, which amplifies the effects on air pollution. The findings of this paper offer vital insights into the MV, EC, and CO2 nexus under chaos, fractionality, and nonlinearity. Important policy recommendations are generated.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3